Voevodsky's mixed motives versus Kontsevich's noncommutative mixed motives
نویسندگان
چکیده
منابع مشابه
Mixed Motives
2.1 Weight-two complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Beilinson-Lichtenbaum complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Bloch’s cycle complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Suslin homology and Friedlander-Suslin cohomology . . . . . . . . . . . . . 17 2.5 C...
متن کاملPeriods and mixed motives
We define motivic multiple polylogarithms and prove the double shuffle relations for them. We use this to study the motivic fundamental group π 1 (Gm −μN ), where μN is the group of all N -th roots of unity, and relate the structure of π 1 (Gm − μN ) to the geometry and topology of modular varieties Xm(N) := Γ1(m;N)\GLm(R)/R ∗ + ·Om for m = 1, 2, 3, 4, .... We get new results about the action o...
متن کاملKontsevich’s Noncommutative Numerical Motives
In this note we prove that Kontsevich’s category NCnum(k)F of noncommutative numerical motives is equivalent to the one constructed by the authors in [14]. As a consequence, we conclude that NCnum(k)F is abelian semi-simple as conjectured by Kontsevich.
متن کاملJacobians of Noncommutative Motives
In this article one extends the classical theory of (intermediate) Jacobians to the “noncommutative world”. Concretely, one constructs a Q-linear additive Jacobian functor N 7→ J(N) from the category of noncommutative Chow motives to the category of abelian varieties up to isogeny, with the following properties: (i) the first de Rham cohomology group of J(N) agrees with the subspace of the odd ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2014
ISSN: 0001-8708
DOI: 10.1016/j.aim.2014.07.022